Lab 4 - Ekonometrika 2 (2012) - Time Series 2 (STATA)
Ekonometrika 2
Program S1 Ilmu Ekonomi FEUI
Maret 2012
Lab ke-4
Analisis Time Series 2
(STATA)
(STATA)
Gunakan data PHILLIPS.dat dengan deskripsi variable di PHILLIPS.txt.
. use “http://fmwww.bc.edu/ec-p/data/wooldridge/PHILLIPS.dta”
. *Lakukan set time data terlebih dahulu sebelum melakukan estimasi times series
. tsset year
time variable: year, 1948 to 1996
delta: 1 unit
- Lakukan pengujian apakah terdapat serial correlation pada masing –masing model di bawah ini
(i) Model statis statis kurva Phllips (1)
inft=b0+b1unemt+ut (1)
. quietly reg inf unem
. dwstat
Durbin-Watson d-statistic( 2, 49) = .8027005
. bgodfrey
Breusch-Godfrey LM test for autocorrelation
---------------------------------------------------------------------------
lags(p) | chi2 df Prob > chi2
-------------+-------------------------------------------------------------
1 | 18.472 1 0.0000
---------------------------------------------------------------------------
H0: no serial correlation
. predict u1, resid
. reg u1 L.u1
Source | SS df MS Number of obs = 48
-------------+------------------------------ F( 1, 46) = 24.34
Model | 150.91704 1 150.91704 Prob > F = 0.0000
Residual | 285.198412 46 6.19996547 R-squared = 0.3460
-------------+------------------------------ Adj R-squared = 0.3318
Total | 436.115452 47 9.27905217 Root MSE = 2.49
------------------------------------------------------------------------------
u1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
u1 |
L1. | .5729695 .1161334 4.93 0.000 .3392052 .8067338
|
_cons | -.1133967 .359404 -0.32 0.754 -.8368393 .610046
------------------------------------------------------------------------------
(ii) Dinamik kurva Phillips-1 (kurva Philips dengan asumsi angka pengangguran alamiah konstan) (2)
cinf=d0+d1unem+e (2)
. quietly reg cinf unem
. dwstat
Durbin-Watson d-statistic( 2, 48) = 1.769648
. bgodfrey
Breusch-Godfrey LM test for autocorrelation
---------------------------------------------------------------------------
lags(p) | chi2 df Prob > chi2
-------------+-------------------------------------------------------------
1 | 0.062 1 0.8039
---------------------------------------------------------------------------
H0: no serial correlation
. predict u2, resid
(1 missing value generated)
. reg u2 L.u2
Source | SS df MS Number of obs = 47
-------------+------------------------------ F( 1, 45) = 0.08
Model | .350023904 1 .350023904 Prob > F = 0.7752
Residual | 190.837373 45 4.24083051 R-squared = 0.0018
-------------+------------------------------ Adj R-squared = -0.0204
Total | 191.187397 46 4.15624776 Root MSE = 2.0593
------------------------------------------------------------------------------
u2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
u2 |
L1. | -.0355928 .1238908 -0.29 0.775 -.2851216 .213936
|
_cons | .1941655 .3003839 0.65 0.521 -.4108387 .7991698
------------------------------------------------------------------------------
(iii) Dinamik kurva Phillips-2 (kurva Philips dengan asumsi angka pengangguran merupakan fungsi dari angka pengangguran pada periode sebelumnya) (3)
cinf=q0+q1cunem+e (3)
. quietly reg cinf cunem
. dwstat
Durbin-Watson d-statistic( 2, 48) = 1.849401
. bgodfrey
Breusch-Godfrey LM test for autocorrelation
---------------------------------------------------------------------------
lags(p) | chi2 df Prob > chi2
-------------+-------------------------------------------------------------
1 | 0.042 1 0.8385
---------------------------------------------------------------------------
H0: no serial correlation
. predict u3, resid
(1 missing value generated)
. reg u3 L.u3
Source | SS df MS Number of obs = 47
-------------+------------------------------ F( 1, 45) = 0.05
Model | .215297942 1 .215297942 Prob > F = 0.8313
Residual | 210.917548 45 4.68705663 R-squared = 0.0010
-------------+------------------------------ Adj R-squared = -0.0212
Total | 211.132846 46 4.58984449 Root MSE = 2.165
------------------------------------------------------------------------------
u3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
u3 |
L1. | -.0283512 .1322822 -0.21 0.831 -.2947812 .2380788
|
_cons | .1585139 .3157922 0.50 0.618 -.4775242 .794552
------------------------------------------------------------------------------
- Bandingkan hasil pengujian dari ketiga model di atas, dan beri analisis anda tentang persamaan dan/atau perbedaan hasil pengujian di atas.
. quietly reg inf unem
. estimates store inf
. quietly reg cinf unem
. estimates store cinf
. quietly reg cinf cunem
. estimates store cinf2
. estimates table inf cinf cinf2 , stat(N r2 r2_a aic bic) b(%7.4f) stfmt(%7.4g) star(0.1 0.05 0.01)
-----------------------------------------------------
Variable | inf cinf cinf2
-------------+---------------------------------------
unem | 0.4676 -0.5426**
cunem | -0.8422**
_cons | 1.4236 3.0306** -0.0782
-------------+---------------------------------------
N | 49 48 48
r2 | .05272 .1078 .135
r2_a | .03257 .0884 .1162
aic | 252.9 224.2 222.7
bic | 256.6 228 226.5
-----------------------------------------------------
legend: * p<.1; ** p<.05; *** p<.01
- Lakukan pengujian Unit Root untuk mendeteksi stationaritas data inflasi dan data pengangguran dengan menggunakan regresi ADF model. Beri intrepretasi terhadap hasil pengujian anda!. Berdasarkan hasil pengujian ini, apakah anda mendeteksi adanya regresi palsu (spurious regression)?
. * Lakukan pengujian Unit Root untuk mendeteksi stationaritas data inflasi dan data pengangguran dengan menggunakan regresi ADF
. dfuller inf, regres trend
Dickey-Fuller test for unit root Number of obs = 48
---------- Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
------------------------------------------------------------------------------
Z(t) -3.449 -4.168 -3.508 -3.185
------------------------------------------------------------------------------
MacKinnon approximate p-value for Z(t) = 0.0452
------------------------------------------------------------------------------
MacKinnon approximate p-value for Z(t) = 0.0452
------------------------------------------------------------------------------
D.inf | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
inf |
L1. | -.3856691 .1118259 -3.45 0.001 -.6108981 -.1604402
_trend | .0362198 .0256589 1.41 0.165 -.0154598 .0878995
_cons | .5996598 .7310425 0.82 0.416 -.8727353 2.072055
------------------------------------------------------------------------------
. dfuller unem, regres trend
Dickey-Fuller test for unit root Number of obs = 48
---------- Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
------------------------------------------------------------------------------
Z(t) -2.993 -4.168 -3.508 -3.185
------------------------------------------------------------------------------
MacKinnon approximate p-value for Z(t) = 0.1340
------------------------------------------------------------------------------
D.unem | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
unem |
L1. | -.3507138 .1171655 -2.99 0.004 -.5866972 -.1147303
_trend | .0164492 .0132111 1.25 0.220 -.0101593 .0430576
_cons | 1.646202 .5768054 2.85 0.007 .4844567 2.807948
------------------------------------------------------------------------------
. * kesimpulannya: data inflasi dan data pengangguran tidak stasioner
. * uji spurious regression
. quietly reg inf unem
. predict error, resid
. dfuller error, regres trend
Dickey-Fuller test for unit root Number of obs = 48
---------- Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
------------------------------------------------------------------------------
Z(t) -3.846 -4.168 -3.508 -3.185
------------------------------------------------------------------------------
MacKinnon approximate p-value for Z(t) = 0.0144
------------------------------------------------------------------------------
D.error | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
error |
L1. | -.4539094 .1180233 -3.85 0.000 -.6916206 -.2161982
_trend | .0304812 .026365 1.16 0.254 -.0226207 .0835831
_cons | -.8596548 .7381616 -1.16 0.250 -2.346388 .627079
------------------------------------------------------------------------------
. * kesimpulannya: tidak spurious regression atau nenilkik kointergarsi karen nilai error stasioner
SOAL B
Gunakan data Okun.dta
. use “http://fmwww.bc.edu/ec-p/data/wooldridge/okun.dta”
. tsset year
time variable: year, 1959 to 2005
delta: 1 unit
- Estimasi persamaan di bawah ini dengan metode OLS
pcrgdpt=b0+b1∆unemt+ut (4)
. reg pcrgdp cunem
Source | SS df MS Number of obs = 46
-------------+------------------------------ F( 1, 44) = 107.92
Model | 131.353664 1 131.353664 Prob > F = 0.0000
Residual | 53.5559029 44 1.21717961 R-squared = 0.7104
-------------+------------------------------ Adj R-squared = 0.7038
Total | 184.909567 45 4.10910148 Root MSE = 1.1033
------------------------------------------------------------------------------
pcrgdp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cunem | -1.890915 .1820239 -10.39 0.000 -2.25776 -1.52407
_cons | 3.344427 .1626743 20.56 0.000 3.016578 3.672275
------------------------------------------------------------------------------
- Lakukan pengujian AR (1) serial correlation dan berikan interpretasi anda terhadap hasil pengujian ini dan dikaitkan dengan estimasi parameter persamaan (4).
. quietly reg pcrgdp cunem
. dwstat
Durbin-Watson d-statistic( 2, 46) = 1.856618
. bgodfrey
Breusch-Godfrey LM test for autocorrelation
---------------------------------------------------------------------------
lags(p) | chi2 df Prob > chi2
-------------+-------------------------------------------------------------
1 | 0.193 1 0.6601
---------------------------------------------------------------------------
H0: no serial correlation
. predict error, resid
(1 missing value generated)
. reg error L.error
Source | SS df MS Number of obs = 45
-------------+------------------------------ F( 1, 43) = 0.15
Model | .177626827 1 .177626827 Prob > F = 0.7052
Residual | 52.6493732 43 1.22440403 R-squared = 0.0034
-------------+------------------------------ Adj R-squared = -0.0198
Total | 52.827 44 1.20061364 Root MSE = 1.1065
------------------------------------------------------------------------------
error | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
error |
L1. | .0580417 .1523871 0.38 0.705 -.2492761 .3653595
|
_cons | .0176032 .1649796 0.11 0.916 -.31511 .3503163
------------------------------------------------------------------------------
- Hitung residual dari hasil estimasi di atas dan pangkatkan 2 (ût 2 ) dan lakukan pengujian untuk mendeteksi masalah heterokedastisitas dengan Breusch-Pagan test (run ût 2 terhadap ∆unemt ) dan berikan interprerasi anda
. gen error2 = error^2
(1 missing value generated)
. reg error2 cunem
Source | SS df MS Number of obs = 46
-------------+------------------------------ F( 1, 44) = 4.27
Model | 7.50942413 1 7.50942413 Prob > F = 0.0447
Residual | 77.3669243 44 1.75833919 R-squared = 0.0885
-------------+------------------------------ Adj R-squared = 0.0678
Total | 84.8763484 45 1.88614108 Root MSE = 1.326
------------------------------------------------------------------------------
error2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cunem | .4521206 .2187773 2.07 0.045 .0112039 .8930373
_cons | 1.16819 .1955208 5.97 0.000 .774144 1.562237
------------------------------------------------------------------------------
. quietly reg pcrgdp cunem
. hettest
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of pcrgdp
chi2(1) = 2.77
Prob > chi2 = 0.0960
- Estimasi kembali persaman (4) dengan menggunakan metode WLS dan bandingkan hasil regresinya dengan hasil regresi dengan metode OLS, berikan analisis anda dikaitkan dengan pengujian untuk mendeteksi masalah heteroskedastis di atas.
. reg pcrgdp cunem [w=error2]
(analytic weights assumed)
(sum of wgt is 5.3556e+01)
Source | SS df MS Number of obs = 46
-------------+------------------------------ F( 1, 44) = 53.77
Model | 153.069146 1 153.069146 Prob > F = 0.0000
Residual | 125.24728 44 2.84652908 R-squared = 0.5500
-------------+------------------------------ Adj R-squared = 0.5398
Total | 278.316426 45 6.18480946 Root MSE = 1.6872
------------------------------------------------------------------------------
pcrgdp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cunem | -1.740022 .2372842 -7.33 0.000 -2.218237 -1.261807
_cons | 3.334796 .2588378 12.88 0.000 2.813143 3.856449
------------------------------------------------------------------------------
. hettest
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of pcrgdp
chi2(1) = 0.08
Prob > chi2 = 0.7808
-------------------------------------------------
Versi PDF di Scribd
Komentar
Posting Komentar